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“Big Data” is everywhere ...
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But Bigger 6⇒ Better, even for Least-Squares (LSE)
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Bigger 6⇒ Better: A Mathematical Proof

A Heteroscedastic Regression Model

Yi = βXi + εi , εi ∼ N(0, σ2X η
i ), i = 1, . . . , n

Least-squares estimator:

β̂LSE =
∑n

i=1 XiYi∑n
i=1 X

2
i

“Sandwich” estimator of var:

V̂ LSE =
∑n

i=1 X
2
i (Yi−Xi β̂

LSE )2

[
∑n

i=1 X
2
i ]

2

But β̂LSE is not self-efficient (Meng, 1994) when η 6= 0:

V(β̂LSE |X , θ) = σ2

∑n
i=1 X

2+η
i[∑n

i=1 X
2
i

]2
Compare, when η = 0:

V(β̂LSE |X , θ) = σ2 1∑n
i=1 X

2
i
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What went wrong?

Those observations with large variabilities received more
weight than they deserve.

Re-weight the data by Wi = X
−η/2
i (assume η is known)

WiYi = β(WiXi ) + ε̃i , ε̃i ∼ N(0, σ2), i = 1, . . . , n

β̂MLE =

∑n
i=1 X

1−η
i Yi∑n

i=1 X
2−η
i

V(β̂MLE |X , θ) = σ2 1∑n
i=1 X

2−η
i

So it is justifiable to throw away some data points if you don’t
know how to use them most effectively because

When the optimal Wi ’s have large variation, setting small
Wi ’s to zero better approximates the optimal weighting
scheme than “blindly” using equal weights.
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Don’t sue me ...
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From Robins and Wang (2000, Biometrika)
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Data Quality vs Quantity: Motivating questions

We know that a 5% random sample is better than a 5%
non-random sample in measurable ways (e.g., bias,
predictive power).

But is an 80% non-random sample “better” than a
5% random sample in measurable terms? 90%?
95%? 99%? (Wu, 2012, Seminar at Harvard Statistics)

“Which one should we trust more: a 1% survey with
60% response rate or a non-probabilistic dataset
covering 80% of the population?” (Keiding and Louis,
2015, Joint Statistical Meetings; and JRSSB, 2016)
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A Bit of History: Theory and Practice

Law of Large Numbers:
Jakob Bernoulli (1713)

Central Limit Theorem:
Abraham de Moivre (1733):
error ∝ 1√

n
: n − sample size

Survey Sampling:

Graunt (1662); Laplace (1882)
The “intellectually violent
revolution” in 1895 by Anders
Kiær, Statistics Norway

Landmark paper: Jerzy
Neyman (1934)

The “revolution” lasted
about 50 years (Jelke
Bethlehem, 2009)

First implementation in
US Census: 1940 led by
Morris Hansen
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No need to worry about the population size at all?

Think about tasting
soup ...

Stir it well, then a
few bits are
sufficient regardless
of the size of the
container!
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A statistical counterpart of the Euler’s identity?

What are the five most fundamental symbols in Statistics?

µ: Average/Mean Ave{Xj , j = 1, . . .}

σ: Standard Deviation
√

Ave{(Xj − µ)2}

ρ: Correlation Ave
(
Xj

σx

Yj

σy

)
− Ave(

Xj

σx
)Ave(

Yj

σy
)

n: Sample Size

N: Population Size The unexpected one ...

The Most Beautiful Statistical Identity?

µ̂n − µN
= ρ̂σ

√
N−n
n
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2016 US Presidential Election

n: number of respondents to an election survey

N: number of (actual) voters in US

Xj = 1: plan to vote for Trump; Xj = 0 otherwise

Rj = 1: report (honestly) voting plan; Rj = 0 otherwise

Estimatinng Trump’s share: µ
N

= Ave(Xj) by sample average:

µ̂n =
R1X1 + . . .+ RNXN

n
=

Ave(RjXj)

Ave(Rj)

Actual estimation error

µ̂n − µN
=

Ave(RjXj)

Ave(Rj)
− Ave(Xj)

=

[
Ave(RjXj)− Ave(Rj)Ave(Xj)

σ
R
σ

X

]
× σ

R

Ave(Rj)
× σ

X
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Data quality, quantity, and uncertainty

Because σ2
R = f (1− f ), f = Ave{Rj} = n

N , we have

Error = ρ̂
R,X︸︷︷︸

Data Quality

×

√
N − n

n︸ ︷︷ ︸
Data Quantity

× σ
X︸︷︷︸

Problem Difficulty
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Data Defect Index (d.d.i.)

Mean Squared Error (MSE)

MSE(µ̂n) = ER(ρ̂2)× N − n

n
× σ2

X

Data Defect Index (d.d.i): DI = ER(ρ̂2)

For Simple Random Sample (SRS): DI = (N − 1)−1

For probabilistic samples in general: DI ∝ N−1

Deep trouble when DI does not vanish with N−1;

or equivalently when ρ̂ does not vanish with N−1/2 ...
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A Law of Large Populations (LLP)

If ρ = ER(ρ̂) 6= 0, then on average, the relative error ↑
√
N:

“Z−score” ≡ Actual Error

Benchmark SRS Standard Error
=
√
N − 1ρ̂

The (lack-of) design effect (Deff)

Deff =
MSE

Benchmark SRS MSE
= (N − 1)DI

The Effective Sample Size neff of a “Big Data” set

Equate its MSE to that from a SRS with size neff :

DI

[
1− f

f

]
σ2 =

1

N − 1

[
N − neff

neff

]
σ2
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Gaining 2020 Vision: Assessing the behavioral ρ̂

CCES: Cooperative Congressional Election Study
(Conducted by Stephen Ansolabehere, Brian Schaffner, Sam Luks, Douglas Rivers

on Oct 4 - Nov 6, 2016 (YouGov); Analysis assisted by Shiro Kuriwaki)

Poll underestimated

Clinton support

Poll overestimated

Clinton support
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Reasonable predictions for Clinton’s Vote Share
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Gross under-prediction/reporting of Trump’s Share

CCES: Cooperative Congressional Election Study

Poll underestimated

Trump support

Poll overestimated

Trump support
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There are many “undecided” ...
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Assessing ρ̂ using validated voter counts

Let µ
N

be the true share, and µ̂n the estimated share. Then

ρ̂ =
µ̂n − µN√

N−n
n σ2

, & σ2 = µ
N

(1− µ
N

)

−0.00021 ± 0.00061
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Trump: ρ̂ ≈ −0.0045± 0.0006

Problem: Voter validation is done through matching
algorithms and it is not fool-proof, and it may introduce
additional selection bias.
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What’s the implication of ρ̂ = −0.005?

Many (major) election survey results were published daily
for several months before Nov 8, 2016;

Roughly amounts to having opinions from (up to) f = 1%
of US voting eligible population: n ≈ 2, 300, 000;

Equivalent to about 2,300 surveys of 1,000 respondents
each.

When ρ̂ = −0.005 = −1/200,DI = 1/40000, and hence

neff =
f

1− f

1

DI
=

1

99
× 40000 ≈ 404!

A 99.98% reduction in n, caused by ρ̂ = −0.005.

Butterfly Effect due to Law of Large Populations (LLP)

Relative Error =
√

N− 1ρ̂
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Visulizing LLP: Actual Coverage for Clinton

AL

AK

AZ

AR

CA

CO

CT
DEDC

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD
MA

MI

MN

MS
MO

MT

NE

NV

NH

NJNM

NY

NC
ND

OH

OK

OR

PA

RI
SC

SD
TN

TX

UT

VT VA

WA

WV
WI

WY

−10

−5

−2

0

2

5

5.5 6.0 6.5 7.0

log10 (Total Voters)

C
lin

to
n 

Z
n



Menu 22

Xiao-Li Meng
Department of

Statistics,
Harvard

University

Big 6= Better

Motivation

Soup

Euler Identity

Derivation

Trio

LLP

CCES

Assessing d.d.i

Paradox

Lessons

Visulizing LLP: Actual Coverage for Trump
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The Big Data Paradox:

If we do not pay attention to data quality, then

The bigger the data,

the surer we fool ourselves.
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Lessons Learned ...

Lesson 1: What matters most is the quality, not the
quantity.

Lesson 2: Don’t ignore seemingly tiny probabilistic
datasets when combining data sources.

Lesson 3: Watch the relative size, not the absolute
size.

Lesson 4: Probabilistic sampling is an extremely
powerful tool to ensure data quality, but it is not the
only strategy.

Lesson 5: We may all have had too much
“confidence” in big size ...
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... and learning from real experts ...

19 things we learned from the 2016 election∗

Andrew Gelman† Julia Azari‡

12 July 2017

We can all agree that the presidential election result was a shocker. According to news reports,

even the Trump campaign team was stunned to come up a winner.

So now seems like a good time to go over various theories floating around in political science

and political reporting and see where they stand, now that this turbulent political year has drawn

to a close. In the present article, we go through several things that we as political observers and

political scientists have learned from the election, and then discuss implications for the future.

The shock

Immediately following the election there was much talk about the failure of the polls: Hillary

Clinton was seen as the clear favorite for several months straight, and then she lost. After all the

votes were counted, though, the view is slightly different: by election eve, the national polls were

giving Clinton 52 or 53% of the two-party vote, and she ended up receiving 51%. An error of 2

percentage points is no great embarrassment.

The errors in the polls were, however, not uniform. As Figures 1 and 2 show, the Republican

candidate outperformed by about 5% in highly Republican states, 2% in swing states, and not

at all, on average, in highly Democratic states. This was unexpected in part because, in other

recent elections, the errors in poll-based forecasts did not have this sort of structure. In 2016,

though, Donald Trump won from his better-than-expected performance in Wisconsin, Michigan,

North Carolina, Pennsylvania, and several other swing states.

Trump’s win in the general election, and the corresponding success of Republican candidates for

the U.S. Senate, then raises two questions: (1) What did the polls get wrong in these key states?,

(2) How did Trump and his fellow Republicans do so well? The first is a question about survey

respondents, the second a question about voters.

Going backward in time from the election-day shocker, there is the question of how Trump, as a

widely unpopular candidate without the full backing of his party, managed to stay so close during

the general election campaign. Given the weaknesses of the Trump candidacy as traditionally

measured, it was a surprise to many that he was polling at 48% of the two-party vote rather than,

say, 40%. And, even before that, the surprise was that Trump won the nomination against so many

in the Republican party.

In sum, nearly every step of the 2016 election campaign was some sort of a surprise to pundits,

political scientists, and political professionals. So this seems like a good opportunity to learn.

Nominations and campaigning

1. The party didn’t decide.

We can start with the primaries, which provided a counterexample to the Party Decides theory

of Marty Cohen, David Karol, Hans Noel, and John Zaller (2008), who wrote that “unelected

∗To appear, with discussion, in Statistics and Public Policy. This article is an expansion of Gelman (2016e) and
Azari (2016b). We thank Bob Erikson, Yair Ghitza, Deborah Chasman, David Banks, an anonymous reviewer, and
several blog commenters for helpful discussion.
†Department of Statistics and Department of Political Science, Columbia University.
‡Department of Political Science, Marquette University.
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