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But Bigger - Better, even for Least-Squares (LSE)

Big # Better




Bigger # Better: A Mathematical Proof

Un

Big # Better




Bigger # Better: A Mathematical Proof




Bigger # Better: A Mathematical Proof

VLSE _ i1 Xi2(Yi_XiBLSE)2
[27:1 Xi2]2




Bigger # Better: A Mathematical Proof

A Heteroscedastic Regression Model

Big # Better N
VLSE — i1 Xi2(Yi_Xi§LSE)2
[27:1 XI2]




Bigger # Better: A Mathematical Proof

A Heteroscedastic Regression Model

Big # Better N
VLSE — i1 Xi2(Yi_Xi§LSE)2
[27:1 XI2]

But AL5E is not self-efficient (Meng, 1994) when 7 # 0:

. n Xt
V(BLSE|X,0) _ 0_2 21;1 12 >
[Zi:l Xi ]

Compare, when 1 = 0:

1

V(BYEIX,0) = o* =5
D1 Xi2
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’ What went wrong?
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@ Those observations with large variabilities received more
weight than they deserve.

Re-weight the data by W; = X,-_"/2 (assume 7 is known)

Big # Better

W;Y; = B(WiX;) + &, &~ N(0,0%), i=1,....,n

n 1-ny,. A 1
Lz X Y V(Bumiel X, 0) = o®

BMLE = n 2—n
S X i1 %

So it is justifiable to throw away some data points if you don't

know how to use them most effectively because

When the optimal W;'s have large variation, setting small
Wi;’s to zero better approximates the optimal weighting
scheme than “blindly” using equal weights.




Qo
< U,

Don't sue me ...

AR
Statistic®

WHEN IT SEEMS DESIRABLE TO
IGNORE DATA

Big # Better

Herman Chernoff
Massachusetts Institute of Technology

ABSTRACT

An experiment designed to detect the relative motion of two
astronomical objects raised the problem of testing, against shift
alternatives, the hypotehsis HO that two energy distributions
are equivalent., The relevant data consist of independent Poisson
counts Xij with means )‘jpi'Ti' where )‘,]' is the intensity of
radiation from the jth object, D; 1is the probability that e
random photon from the jth object has energy in a small interval
centered about e and TiA is the time duration allocated to

the count Xij' The hypothesis Ho implies that Pi1 = Pip for

i=1,2, ..., m
A natural test uses the statistic Zei(ﬁiz - py;) where the
ﬁi' are estimates of ;e For intervals where the pij were

anticipated to be small, the experimenter chose small values




From Robins and Wang (2000, Biometrika)
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Data Quality vs Quantity: Motivating questions

@ We know that a 5% random sample is better than a 5%
non-random sample in measurable ways (e.g., bias,
predictive power).

@ But is an 80% non-random sample “better” than a
5% random sample in measurable terms? 90%?
95%7?7 99%7? (Wu, 2012, Seminar at Harvard Statistics)

Motivation

e “Which one should we trust more: a 1% survey with
60% response rate or a non-probabilistic dataset
covering 80% of the population?” (Keiding and Louis,
2015, Joint Statistical Meetings; and JRSSB, 2016)
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A Bit of History: Theory and Practice

e Law of Large Numbers:
Jakob Bernoulli (1713)

@ Central Limit Theorem:
Abraham de Moivre (1733):

OT o L - o
error /- n b&mpb sS1ze

o Landmark paper: Jerzy
Neyman (1934)

@ The “revolution” lasted

about 50 years (Jelke
Bethlehem, 2009)

Motivation

e Survey Sampling: @ First implementation in
o Graunt (1662); Laplace (1882) US Census: 1940 led by
o The “intellectually violent Morris Hansen

revolution” in 1895 by Anders
Kiaer, Statistics Norway
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Euler’s identity: An unexpected helper
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Euler Identity

nnnnnnnnnnnnnnnnnnnnnnn

@ 5 most fundamental numbers in mathematics:
0,1, e,m,1-v=1

@ The unexpected one: | = +/—1
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Euler Identity

A statistical counterpart of the Euler's identity?

What are the five most fundamental symbols in Statistics?

TR
° o
° p:
o n

o \N:

Average/Mean Ave{X;,j=1,...}
Standard Deviation VAve{(X; — p)?}

. XY X: Y.
Correlation Ave (af?j) - Ave(a—i)Ave(U—;)

Sample Size

Population Size The unexpected one ...

The Most Beautiful Statistical ldentity?
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@ n: number of respondents to an election survey
@ N: number of (actual) voters in US

e X; = 1: plan to vote for Trump; X; = 0 otherwise

@ R; = 1: report (honestly) voting plan; R; = 0 otherwise
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2016 US Presidential Election

@ n: number of respondents to an election survey
@ N: number of (actual) voters in US

e X; = 1: plan to vote for Trump; X; = 0 otherwise

@ R; = 1: report (honestly) voting plan; R; = 0 otherwise

Estimatinng Trump's share: p,, = Ave(X;) by sample average:

. Ri X1+ ...+ RyXn _ Ave(Rij)
" n ~ Ave(R))

A~

Derivation

Actual estimation error

. Ave(R;X;)
— fy = —— < — Ave(X;
Mn IU’N AVG(F\)J) Ve( J)
Ave(R;X;) — Ave(R;)Ave(X;) Op
= X Oy

040y * Ave(R))
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Because 0% = f(1 — f), f = Ave{R;} = §, we have

Error = pp, X
~—
Data Quality
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Data Defect Index (d.d.i.)

Mean Squared Error (MSE)

R R N —n
MSE(fin) = ER(7%) x —— x o

Data Defect Index (d.d.i): D; = Eg(p?)
For Simple Random Sample (SRS): D, = (N — 1)1

For probabilistic samples in general:  D; oc N1

Deep trouble when D; does not vanish with N~1;

or equivalently when p does not vanish with N=1/2 ..
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If p = Er(p) # 0, then on average, the relative error 1+ v/N:

Actual Error
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seore Benchmark SRS Standard Error p )

The (lack-of) design effect (Deff)
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A Law of Large Populations (LLP)

Actual Error
“Z— = =vN-1p
PeoTe Benchmark SRS Standard Error 4

The (lack-of) design effect (Deff)

MSE

DEifS Benchmark SRS MSE -

(N—1)D,

The Effective Sample Size n.g of a “Big Data” set
Equate its MSE to that from a SRS with size ngg:

1—f 1 N —
D/[ }02: [ neﬁ}az

f N-—1 Neft




Gaining 2020 Vision: Assessing the behavioral p

CCES: Cooperative Congressional Election Study
(Conducted by Stephen Ansolabehere, Brian Schaffner, Sam Luks, Douglas Rivers
on Oct 4 - Nov 6, 2016 (YouGov); Analysis assisted by Shiro Kuriwaki)
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Reasonable predictions for Clinton’s Vote Share



: Cooperative Congressional Election Study
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There are many “undecided” ...
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Let 1, be the true share, and fi, the estimated share. Then
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| [<0.00021 £ 0.00061
e

| [£0.0045 £ 0.00056
i
t

Count

4

Count

o4
-0.010 -0.005 0.000
Clinton Py

Clinton: p ~ —0.0002 £ 0.0006

0.005 0.010 ~0.010 -0.005 0.000 0.005 0.010

Trump Py

Trump: p =~ —0.0045 + 0.0006

Assessing d.d.i

@ Problem: Voter validation is done through matching

algorithms and it is not fool-proof, and it may introduce
additional selection bias.
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What's the implication of p = —0.0057

e Many (major) election survey results were published daily
for several months before Nov 8, 2016;

@ Roughly amounts to having opinions from (up to) f = 1%
of US voting eligible population: n =~ 2,300, 000;

@ Equivalent to about 2,300 surveys of 1,000 respondents
each.

When p = —0.005 = —1/200, D; = 1/40000, and hence

f1 1
ot = —— = o= X 40000 ~ 404!
Mot = T Fpr = gg X 40000~ 40

@ A 99.98% reduction in n, caused by p = —0.005.
Assessing d.d. e Butterfly Effect due to Law of Large Populations (LLP)

Relative Error = vN — 1)
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Visulizing LLP: Actual Coverage for Trump
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The Big Data Paradox:

If we do not pay attention to data quality, then

The bigger the data,

the surer we fool ourselves.
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Lessons Learned ...

Lesson 1: What matters most is the quality, not the
quantity.

@ Lesson 2: Don’t ignore seemingly tiny probabilistic
datasets when combining data sources.

@ Lesson 3: Watch the relative size, not the absolute
size.

@ Lesson 4: Probabilistic sampling is an extremely
powerful tool to ensure data quality, but it is not the
only strategy.

@ Lesson 5: We may all have had too much
“confidence” in big size ...

Lessons
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Lessons

... and learning from real experts ...

19 things we learned from the 2016 election*

it

Andrew Gelman' Julia Aza
12 July 2017

‘We can all agree that the presidential election result was a shocker. According to news reports,
even the Trump campaign team was stunned to come up a winner.

So now seems like a good time to go over various theories floating around in political science
and political reporting and see where they stand, now that this turbulent political year has drawn
to a close. In the present article, we go through several things that we as political observers and
political scientists have learned from the election, and then discuss implications for the future.

The shock

Immediately following the election there was much talk about the failure of the polls: Hillary
Clinton was seen as the clear favorite for several months straight, and then she lost. After all the
votes were counted, though, the view is slightly different: by election eve, the national polls were
giving Clinton 52 or 53% of the two-party vote, and she ended up receiving 51%. An error of 2
percentage points is no great embarrassment.

The errors in the polls were, however, not uniform. As Figures 1 and 2 show, the Republican
candidate outperformed by about 5% in highly Republican states, 2% in swing states, and not
at all, on average, in highly Democratic states. This was unexpected in part because, in other
recent elections, the errors in poll-based forecasts did not have this sort of structure. In 2016,
though, Donald Trump won from his better-than-expected performance in Wisconsin, Michigan,
North Carolina, Pennsylvania, and several other swing states.

Trump’s win in the general election, and the corresponding success of Republican candidates for
the U.S. Senate, then raises two questions: (1) What did the polls get wrong in these key states?,
(2) How did Trump and his fellow Republicans do so well? The first is a question about survey
respondents, the second a question about voters.

Going backward in time from the election-day shocker, there is the question of how Trump, as a
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